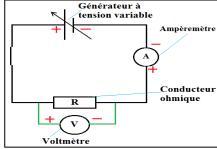
Niveau: 3 APIC Bourassi

Chapitre 7

Loi d'OHM


I. Rappel: grandeur physique.

Grandeur physique	symbole	unité	Appareil de mesure	Branchement de l'appareil
Tension électrique	U	Volt (V)	Voltmètre v_v_com	En dérivation
Intensité du courant électrique	I	Ampère (A)	Ampèremètre A Com	En série
Résistance électrique	R	Ohm (\Omega)	Ohmmètre Q com	Direct

II. Loi d'Ohm

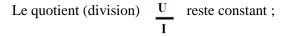
1. Expérience

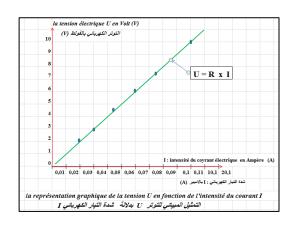
On réalise le dispositif suivant, en utilisant un générateur de tension variable, un conducteur ohmique, à chaque fois on applique aux bornes du conducteur ohmique une tension puis on repère l'intensité du courant qui le traverse,

2. Résultat:

Tension électrique U en (V)	0	2	3	4,5	6	7,5	10
Intensité électrique I en (A)	0	0,02	0,03	0,045	0,06	0,075	0,1
Rapport U I		100	100	100	100	100	100

3. Représentation graphique :


On choisit pour l'axe des abscisses l'échelle : un carreau représente 0,01 A (Intensité de courant) ;


On choisit pour l'axe des ordonnés l'échelle : un carreau représente 1 V (Tension électrique) ;

Voir la représentation ci-contre

4. Observation:

La courbe obtenue est une droite passant par l'origine, la tension est proportionnelle à l'intensité du courant électrique,

5. Déduction:

 $\frac{U}{I}$ = R : s'appelle la résistance électrique du conducteur ohmique, son unité est l'Ohm (Ω) oméga, son appareil de mesure est l'Ohmmètre

La relation obtenue à partir du graphe est $U = R \times I$:

Loi d'Ohm : la tension aux borne du conducteur ohmique est égale au produit de sa résistance électrique avec l'intensité du courant électrique qui le traverse, cette loi est modélisée par la relation : $U = R \times I$;

1

Niveau: 3 APIC Bourassi

U : Désigne la tension aux bornes du conducteur ohmique en (V) ;

I : Désigne l'intensité du courant qui traverse ce conducteur ohmique en (A) ;

R : Désigne la résistance du conducteur ohmique en (Ω) ;

De même on obtient

$\mathbf{U} = \mathbf{R} \times \mathbf{I}$	$I = \frac{U}{R}$	$R = \frac{U}{I}$
Tension électrique	Intensité du courant électrique	Résistance électrique
التوتر الكهربائي	شدة التيار الكهربائي	المقاومة الكهربائية

Exercice d'application

1. Convertir en unité demandé?

$$2,3 \text{ k}\Omega + 700 \Omega = \dots \Omega \quad ; \quad 1,2 \Omega = \dots \dots \text{ m}\Omega \qquad ; \qquad 470 \Omega = \dots \dots \text{ k}\Omega \qquad ; \qquad 87500 \text{ m}\Omega = \dots \dots \Omega$$

$$2 \text{ A} = \dots \dots \text{ M} \quad ; \qquad 730 \text{ m}\text{ M} + 1,27 \text{ A} = \dots \dots \text{ A} \quad ; \qquad 700 \text{ m}\text{ M} = \dots \dots \text{ A}$$

$$220 \text{ V} = \dots \dots \text{ kV} \qquad ; \qquad 500 \text{ mV} + 3,5 \text{ V} = \dots \dots \text{ V} \quad ; \qquad 7500 \text{ mV} = \dots \dots \text{ V}$$

- 2. On applique aux bornes du conducteur ohmique une tension U = 3 V, un courant électrique traverse le conducteur ohmique, l'Ampèremètre indique la valeur I = 60 mA;
- a. Calculer la résistance du conducteur ohmique ?
- b. Quelles sera l'intensité de courant électrique, si on applique aux borne de ce conducteur ohmique une tension U = 4.5 V?

++++++++++++

1 . Conversion d'unité :

$$2,3 \text{ k}\Omega + 700 \Omega = 300 \Omega$$
; $1,2 \Omega = 1200 \text{ m}\Omega$; $470 \Omega = 0,47 \text{ k}\Omega$; $87500 \text{ m}\Omega = 87,5 \Omega$
 $2 \text{ A} = 2000 \text{ m}A$; $730 \text{ m}A + 1,27 \text{ A} = 2 \text{ A}$; $700 \text{ m}A = 0,7 \text{ A}$

$$220 \text{ V} = 0.22 \text{ kV}$$
; $500 \text{ mV} + 3.5 \text{ V} = 4 \text{ V}$; $7500 \text{ mV} = 7.5 \text{ V}$

2 .a . Calcul de la résistance électrique

On appliquant la loi d'Ohm : $U = R \times I$; on aura R = U / I

On a la tension aux bornes du conducteur ohmique $U=3\ V$; l'intensité du courant traversant le conducteur est $I=60\ mA$, convertie en $I=0.06\ A$, on calcule : $R=U\ /\ I$

Alors R = 3 V / 0.06 A; donc $R = 50 \Omega$ est la valeur de la résistance du conducteur ohmique;

2 .b . Calcul de l'intensité du courant électrique

On appliquant la loi d'Ohm : $U = R \times I$; on aura I = U / R

On a la tension aux bornes du conducteur ohmique U=4.5~V; $R=50~\Omega$ est la valeur de la résistance du conducteur ohmique

On calcule : I = U / R alors $I = 4.5 V / 50 \Omega$ donc I = 0.09 A convertie en I = 90 mA

l'intensité du courant traversant le conducteur est I = 90 mA,

2